

 Navigation

 	
 index

 	
 next |

 	django-wibses 0.1 documentation

django-wibses documentation

django-wibses is a webapp simplifying creation and management of semantic scripts (it’s basically a complex, structured JSON).

It comprises of a RESTful backend written in Django, which utilizes pydic [https://github.com/agh-glk/pydic] and a rich-client frontend written in AngularJS.

django-wibses can be used as a standard django application, additionally it provides lightweight command-line execution wrapper.

btw: Wibses stands for Web Interface for Building SEmantic Scripts.

Technologies used

	Django 1.6, Python 2.7

	AngularJS 1.2.X, Angular-UI, CoffeeScript

	Yeoman, Grunt

Contents

	Installation guide
	2 available run modes

	Project setup guide - for Developers
	Prerequisites

	Step-by-step setup guide

	Contributing guidelines
	Git Workflow

	Indentation

	Code Analysis

	CI

	Commit messages

	Python

	Developer’s Corner - known work-arounds
	Installing beta/RC dependency version with bower

Authors

Developers, Architects:

	Wojciech Krzystek (vucalur [https://github.com/vucalur])

	Yaroslav Machkivskiy (taipsedog [https://github.com/taipsedog])

Customer, mentoring:

	Krzysztof Dorosz (cypreess [https://github.com/cypreess])

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Wojciech Krzystek, Yaroslav Machkivskiy.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-wibses 0.1 documentation

Installation guide

2 available run modes

1 - Command line

Not available yet

starts a lightweight web server

2 - Django application

TODO vucalur: write about setting up a sample dajngo site

	Run the script, which assembles the frontend and copies static resources to appropriate locations in django project:

$ cd django-wibses
$./prepare_dist.sh

	Start the django server.

The application, fully hosted by sole django server,
will be available under http://localhost:8000/wibses
(Change the port number if you don’t use django’s default 8000)

 Copyright 2013, Wojciech Krzystek, Yaroslav Machkivskiy.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-wibses 0.1 documentation

Project setup guide - for Developers

Prerequisites

	Project is developed under GNU/Linux. All used tools work also on MacOS and Windows.

	Project is developed under PyCharm 3.X. (Make sure you are using JetBrains Codestyle [https://github.com/vucalur/JetBrains-Codestyle] to indent your code.)

	Here are packages for *buntu 13.10 64 bit. Install their equivalents on the OS of your choice:

	General: bash-completion git ubuntu-restricted-extras meld

	Database: sqlite libsqlite3-dev

	Node.JS: npm nodejs (sudo add-apt-repository -y ppa:chris-lea/node.js)

	Python 2.7: python python-gpgme python-software-properties python-pip python-sphinx python-dev

	Other: ruby-compass ruby1.9.1

Step-by-step setup guide

	Get the source code from https://github.com/vucalur/django-wibses and navigate to the download directory

$ git clone https://github.com/vucalur/django-wibses
$ cd django-wibses

	Install required python packages by running:

$ (sudo) pip install -r requirements.txt

	Prepare dictionary repository - TODO taipsedog

https://pydic.readthedocs.org/en/latest/Introduction.html#preparing-a-pydic-dictionary

	Add django-wibses to your django site:

INSTALLED_APPS = (
 ...
 'wibses',
 'wibses.data_store',
 'wibses.py_dict'
)

TODO taipsedog: No ‘wibses.data_store’ and ‘wibses.py_dict’ - importing only ‘wibses’ shall do the trick

rst reference:
http://sphinx-doc.org/rest.html

	Set wibses-related Django settings

TODO taipsedog

Sample - do this similarly to:
http://django-getpaid.readthedocs.org/en/latest/installation.html#enabling-django-application
http://django-getpaid.readthedocs.org/en/latest/settings.html

	Run the backend server

$ python manage.py runserver

running from PyCharm is advised though

	Navigate to wibses/yo and download dependencies:

$ cd wibses/yo
$ npm install
$ bower install

	Sitll inside wibses/yo run the frontend development server:

$ grunt serve

It should open the browser automatically.

 Copyright 2013, Wojciech Krzystek, Yaroslav Machkivskiy.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-wibses 0.1 documentation

Contributing guidelines

Git Workflow

	We use simplest possible rebase workflow based on this [http://git-scm.com/book/en/Git-Branching-Rebasing].

	Reading whole Chapter 3 [http://git-scm.com/book/en/Git-Branching] is strongly encouraged.

	Do not even try invoking $ git pull or committing 3-way-merge crap like Merge branch 'master' of github.com: blah blah blah :-)

3-way-merges obfuscate history and screw annotations in IDE - Existing code that you are merging in gets annotated with your name, even if you aren’t the author.

Cheatsheet - Rebase Workflow

Make plain old local commmits of your work to the master branch:

$ # git pull # !!!!!!!!!!! DO NOT EVEN TRY !!!!!!!!!!!
$ git fetch # Keep up with recent changes before begining work.
...
$ git commit -m '[#123] Implemented a mechanism to make "blah blah blah" sound wise' # commit your work

Some advice:

	Use git commit --amend. It’s more reliable and faster than local history in IDE.

	If you have a tendency to break down single unit of work into multiple commits locally, remember to squash them before submitting to repo.

Now, synchronize with repo:

$ git checkout master # make sure you are on master branch
$ git fetch # update origin/master with the latest changes from repo. It's safe = No conflicts here, since origin/master is a remote branch.
$ git rebase origin/master # Place your local commits on top of commits from repo, that you just fetched. If you're lucky this will be a fast-forward. If not (changes in the same places), get ready for a merge:
 # Supposing you have a merge:
 # 1. Resolve conflicts by editing conflicted files
 $ git add <<conflicted_files_here__space_separated>> # 2. Mark conflicted files as resolved. In git you do that by by staging those files.
 $ git rebase --continue # 3.

At this point you have local history in-sync with repo
Now you can submit your code with plain old push:
$ git push

Note: fetch & rebase can be replaced with $ git pull --rebase.

For more information what’s happening here, refer to Rebasing subchapter of ProGit [http://git-scm.com/book/en/Git-Branching-Rebasing].

Indentation

	Project is developed under PyCharm 3.X.

	Make sure you are using JetBrains Codestyle [https://github.com/vucalur/JetBrains-Codestyle] to indent your code.

	Some files should not be formatted - check what you’re committing.

	Warning: PyCharm’s code formatter tends to leave parts of CoffeeScript code unindented or screw CS indentation at all. Beware.

Code Analysis

	lint your (Coffee|Java)Script. Linting is done in default grunt task:

$ grunt

	Feel free to ask for a code-review

CI

Unit tests

Unit tests are executed after each commit by Travis-CI.

They can be executed locally by running one of following commands:

	$ grunt

	$ grunt test

	$ grunt test:unit

E2E tests

End-to-end test can be executed only locally due to limitations of grunt-protractor-travis combination.

Historical note: Previously ngScenario was the framework used for e2e testing. Back then e2e test were also executed by Travis-CI.
We have decided to switch to Protractor as advised by Angular documentation (ngScenario was becoming deprecated).
Due to lack of good support for grunt-protractor-travis combination e2e test are executed only locally.
We hope that good integration will be available soon.

In short: It’s each developer’s responsibility to make sure e2e tests pass before committing.

Running e2e tests

	Navigate to yo subdirectory

	Download the Protractor dependencies:

$./node_modules/protractor/bin/webdriver-manager update

	Start the Selenium server:

$./node_modules/protractor/bin/webdriver-manager start

	Start backend (django) server if your tests rely on backend and it’s not being mocked

	Start the frontend server:

$ grunt serve

	Run Protractor:

$./node_modules/protractor/bin/protractor protractor-config.js

Debugging e2e tests

You may find this [https://github.com/angular/protractor/blob/master/docs/debugging.md] helpful

Commit messages

	Be precise, concise and meaningful

	Use Git Commit Guidelines from AngularJS project [https://github.com/angular/angular.js/blob/master/CONTRIBUTING.md#git-commit-guidelines]

We use following types (Additional concept type compared to the original):

	feat : A new feature

	fix : A bug fix

	docs : Documentation only changes

	style : Changes that do not affect the meaning of the code (white-space, formatting, missing semi-colons, etc)

	refactor : A code change that neither fixes a bug or adds a feature.

	perf : A code change that improves performance

	concept : Change of concept, both major and minor. Major ones shall be described in an issue: https://github.com/vucalur/django-wibses/issues.

	test : Adding missing tests

	chore : Changes to the build process or auxiliary tools and libraries such as documentation generation. Also bumping library version.

	Whenever there is an issue (aka ticket) created for what you are working on, reference it in a commit message, like:

feat(blah): #123 Implemented a mechanism to make "blah blah blah" sound wise

Python

	Whenever introducing dependency on a new python module make sure you change requirements.txt accordingly

 Copyright 2013, Wojciech Krzystek, Yaroslav Machkivskiy.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	django-wibses 0.1 documentation

Developer’s Corner - known work-arounds

Installing beta/RC dependency version with bower

$ bower install angular-cookies --save

It will in fact put the latest stable version in bower.json, even if you select otherwise, hence next steps:

	open bower.json

	manually change version of the new dependency to the beta/RC version

	download the beta/RC version:

$ bower update # to actually fetch manually changed version
$ grunt bower-install # to inject to index.html

The last one might not inject stuff properly, even if invoked a couple of times. In such case you will have to inject stuff manually to the index.html.

 Copyright 2013, Wojciech Krzystek, Yaroslav Machkivskiy.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	django-wibses 0.1 documentation

Index

 Copyright 2013, Wojciech Krzystek, Yaroslav Machkivskiy.
 Created using Sphinx 1.2.

 _static/comment-close.png

_static/comment.png

_static/down.png

search.html

 Navigation

 		
 index

 		django-wibses 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Wojciech Krzystek, Yaroslav Machkivskiy.
 Created using Sphinx 1.2.

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/plus.png

_static/up.png

